Results

Logistic Regression

Model Summary - Scored
Model Deviance AIC BIC df ΔΧ² p McFadden R² Nagelkerke R² Tjur R² Cox & Snell R²
M₀ 510.630 512.630 517.396 867     0.000 0.000
M₁ 415.338 423.338 442.403 864 95.292 < .001 0.187 0.234 0.157 0.104
Note.  M₁ includes Ability, Position, Ability:Position
Coefficients
Wald Test
95% Confidence interval
(odds ratio scale)
Model   Estimate Robust
Standard Error
Odds Ratio z Wald Statistic df p Lower bound Upper bound
M₀ (Intercept) 2.358 0.121 10.573 19.521 381.089 1 < .001 8.344 13.398
M₁ (Intercept) 1.786 1.193 5.967 1.497 2.058 1 0.134 0.576 61.827
  Ability 0.084 0.186 1.088 0.453 0.192 1 0.651 0.756 1.566
  Position -1.176 0.377 0.309 -3.120 10.057 1 0.002 0.147 0.646
  Ability * Position 0.191 0.062 1.210 3.060 10.003 1 0.002 1.071 1.368
Note.  Scored level 'Scored penalty' coded as class 1.
Multicollinearity Diagnostics
  Tolerance VIF
Ability 0.168 5.964
Position 0.065 15.418
Ability:Position 0.064 15.734
Influential Cases
Case Number Std. Residual Scored Predicted Value Residual Cook's Distance
. . . . . .
Note.  No influential cases found.

Performance Diagnostics

Confusion matrix
Predicted
Observed Missed penalty Scored penalty % Correct
Missed penalty 10 65 13.333
Scored penalty 5 788 99.369
Overall % Correct 91.935
Note.  The cut-off value is set to 0.5

Diagnostic plots

Independent - predicted plots

Ability
Position
Ability ✻ Position
Position ✻ Ability

Logistic Regression: Factor

Model Summary - Scored
Model Deviance AIC BIC df ΔΧ² p McFadden R² Nagelkerke R² Tjur R² Cox & Snell R²
M₀ 510.630 512.630 517.396 867     0.000 0.000
M₁ 422.624 434.624 463.221 862 88.006 < .001 0.172 0.217 0.135 0.096
M₂ 422.624 434.624 463.221 862 0.000   0.172 0.217 0.135 0.096
Note.  M₁ includes Position, Ability
Note.  M₂ includes Position, Ability
Coefficients
Wald Test
Model   Estimate Standard Error Odds Ratio z Wald Statistic df p
M₀ (Intercept) 2.358 0.121 10.573 19.521 381.089 1 < .001
M₁ (Intercept) -1.510 0.578 0.221 -2.613 6.826 1 0.009
  Position (2) -0.732 0.455 0.481 -1.609 2.589 1 0.108
  Position (3) -0.302 0.466 0.739 -0.647 0.419 1 0.517
  Position (4) -0.273 0.453 0.761 -0.603 0.364 1 0.547
  Position (5) -0.582 0.450 0.559 -1.293 1.671 1 0.196
  Ability 0.673 0.079 1.960 8.520 72.585 1 < .001
M₂ (Intercept) -1.510 0.578 0.221 -2.613 6.826 1 0.009
  Position (2) -0.732 0.455 0.481 -1.609 2.589 1 0.108
  Position (3) -0.302 0.466 0.739 -0.647 0.419 1 0.517
  Position (4) -0.273 0.453 0.761 -0.603 0.364 1 0.547
  Position (5) -0.582 0.450 0.559 -1.293 1.671 1 0.196
  Ability 0.673 0.079 1.960 8.520 72.585 1 < .001
Note.  Scored level 'Scored penalty' coded as class 1.

Performance Diagnostics

Confusion matrix
Predicted
Observed Missed penalty Scored penalty % Correct
Missed penalty 3 72 4.000
Scored penalty 6 787 99.243
Overall % Correct 91.014
Note.  The cut-off value is set to 0.5

Logistic Regression: Linearity

Model Summary - Scored
Model Deviance AIC BIC df ΔΧ² p McFadden R² Nagelkerke R² Tjur R² Cox & Snell R²
M₀ 510.630 512.630 517.396 867     0.000 0.000
M₁ 424.875 434.875 458.705 863 85.755 < .001 0.168 0.212 0.131 0.094
M₂ 421.841 435.841 469.204 861 3.034 0.219 0.174 0.219 0.138 0.097
Note.  M₁ includes Ability, Position, Ln_Ability, Ln_Position
Note.  M₂ includes Ability, Position, Ln_Ability, Ln_Position, Ability:Ln_Ability, Position:Ln_Position
Coefficients
Wald Test
Model   Estimate Standard Error z Wald Statistic df p
M₀ (Intercept) 2.358 0.121 19.521 381.089 1 < .001
M₁ (Intercept) -0.946 1.408 -0.672 0.452 1 0.501
  Ability 0.927 0.409 2.268 5.145 1 0.023
  Position 0.215 0.412 0.523 0.273 1 0.601
  Ln_Ability -1.391 2.104 -0.661 0.437 1 0.509
  Ln_Position -0.713 1.053 -0.677 0.458 1 0.498
M₂ (Intercept) -20.588 11.343 -1.815 3.295 1 0.070
  Ability 8.673 10.135 0.856 0.732 1 0.392
  Position 14.758 9.839 1.500 2.250 1 0.134
  Ln_Ability -11.412 13.637 -0.837 0.700 1 0.403
  Ln_Position -12.463 7.982 -1.561 2.438 1 0.118
  Ability * Ln_Ability -2.158 2.800 -0.771 0.594 1 0.441
  Position * Ln_Position -4.916 3.329 -1.477 2.182 1 0.140
Note.  Scored level 'Scored penalty' coded as class 1.

Logistic Collinearity

Model Summary - Scored
Model Deviance AIC BIC df ΔΧ² p McFadden R² Nagelkerke R² Tjur R² Cox & Snell R²
M₀ 510.630 512.630 517.396 867     0.000 0.000
M₁ 425.738 431.738 446.036 865 84.892 < .001 0.166 0.210 0.132 0.093
Note.  M₁ includes Ability, Position
Coefficients
Wald Test
Model   Estimate Standard Error Odds Ratio z Wald Statistic df p
M₀ (Intercept) 2.358 0.121 10.573 19.521 381.089 1 < .001
M₁ (Intercept) -1.687 0.555 0.185 -3.040 9.244 1 0.002
  Ability 0.665 0.078 1.945 8.547 73.051 1 < .001
  Position -0.056 0.094 0.946 -0.589 0.347 1 0.556
Note.  Scored level 'Scored penalty' coded as class 1.
Multicollinearity Diagnostics
  Tolerance VIF
Ability 1.000 1.000
Position 1.000 1.000

Performance Diagnostics

Confusion matrix
Predicted
Observed Missed penalty Scored penalty % Correct
Missed penalty 1 74 1.333
Scored penalty 3 790 99.622
Overall % Correct 91.129
Note.  The cut-off value is set to 0.5